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Abstract. The dynamical equations of evolution of the products of components of the 
wavevector of an N-level system possessing the so-called Gell-Mann dynamic symmetry 
are studied for two sets of products which resemble the meson and baryon wavefunctions 
in elementary particle physics. The equations are shown to decompose into various 
independent subsets which resemble the groupings of the corresponding elementary 
particles. It is emphasised that dynamical consideration is the principle used in our grouping 
scheme. The sets of product wavefunctions, regardless of their physical origin, will fall 
into groups given in this paper if the dynamics of the wavevector of the N-level system 
has the symmetry of the Gell-Mann type defined. 

1. Introduction 

The problem of dynamic symmetry in quantum electronics was studied by the author 
in a series of papers in recent years [ 1-61. A system consisting of atoms or molecules 
with N transition levels interacting with an intense laser field is said to possess a 
dynamic symmetry if the system possesses constants of evolution other than the constant 
of total population (in a time short compared with the natural decay times of the 
excitations). In particular, the principal features of, and the conditions for, a system 
to possess the so-called Gell-Mann dynamic symmetry were found [4]. It was shown 
that the characteristic set of constants of evolution which the system possesses in this 
case closely resembles the set of quantum numbers associated with the isospin invari- 
ance, strangeness, charm, bottom and top etc, in elementary particle physics (see, for 
example, [7]). 

Let the N components of the column wavevector W(t)=co1(91r,(t) ,  
9*( t ) ,  . . . , 'PIN(  t ) )  represent the probability amplitudes of the system in the N corre- 
sponding levels or states at time t. If the system possesses the Gell-Mann symmetry, 
then the characteristic set of constants of evolution can be expressed in the following 
form [4]: 

(1.la) 

/ U :  . W( t ) /  = constant m = 3 , 4 ,  . . . ,  N (1.lb) 

where U , ,  u 2 , .  . . , uN are a set of N-dimensional column vectors which depend on the 
interaction parameters in the Hamiltonian of the system, and U: ,  U:,  . . . , U ;  denote 
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their corresponding complex conjugate row vectors. Alternatively, we can express (1) 
in terms of the transformed wavevector +( t )  = (t,bl( t ) ,  &( t ) ,  . . . , t jN( t ) )  as 

It,bl(t)12+.Itj2(t)l*= constant (1.2a) 

It,b,,,(t)l =constant m = 3 , 4 ,  . . . ,  N (1.2b) 

where JI(  t )  is related to W( t )  by 

+( t )  = i i + W (  t )  or W ( t )  = & ( t )  (1.3) 

fi being the matrix whose columns are made up  of the column vectors ul ,  U*, . . . , u N .  
Thus, a n  important consequence of the Gell-Mann symmetry is that the space in 

which the transformed wavevector +( t )  evolves decomposes into independent sub- 
spaces. The time-dependent Schrodinger equation which +( t )  satisfies is 

a+ 
a t  

ih-= k(t)+ 

where k(t) is a block diagonal matrix of the form 

k ( t ) = - h  

I I I .  
I I I *  
I I I 

A system whose time evolution obeys the Schrodinger equation 

( 1 . 4 4  

(1.4b) 

(1.5) 

is said tp possess the Gell-Mann dynamic symm5try if a time-independent unitary 
matrix U can be found such that the Hamiltonian H of the system can be transforFed 
through (1.3) to (1.4). A particularly interesting class of physical Hamiltonian H (  t )  
which possess the Gell-Mann symmetry was given in [4], and  has matrix elements 
H,k(f) as follows: 

for I j - kj = even number 
for I j - k (  = odd number, j odd 
for 1 j - kl = odd number, j even 

for j # k H,k( t )  = 

for j odd 
for j even YJ( ' )= 

where j ,  k = 1,2, . . . , N, f( t )  and g( t )  are any arbitrary time-dependent functions, and  
ai any arbitrary constants. 
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Equations (1.4) showed that the components of the transformed wavevector @( t )  
can be characterised and  grouped according to the dynamics of the system. Suppose 
we now form products +,+k+[ .  . . of these wavevector components where the components 
of different subscripts need not commute, or more generally, we form products in 
which every wavevector component also has a spin component s attached to it which 
may be spin u p  ( t ) or  spin down ( J ). We assume that +(ns ) ( t )  obeys (1.4) in which 
the matrix elements of X ( t )  are independent of the spin s. We now ask how the set 
of products +~’)+f”+~‘’’) . . . will be divided and  grouped into subsets which evolve 
independently of each other. In analogy with elementary particle physics, the sets of 
products whose dynamics we shall look into are the set of ‘mesons’ which consist of 
various symmetrised and  antisymmetrised combinations of +; ’)$:”), where 3 denotes 
the complex conjugate of +, and the set of ‘baryons’ which consist of various combina- 
tions of +;’)+;”+~’’’). In quantum electronics, it was the study of the time evolution 
of the ( N 2 -  1)-dimensional coherence vector [8], whose components are made up  of 
various combinations of +j&k,  which first led us to a grouping scheme which was 
noticed to resemble that for the pseudoscalar mesons in particle physics [l].  

In this paper, we shall give the results on how the (2N)’  ‘mesons’, which consist 
of N2 - 1 ‘pseudoscalar mesons’, 3 N 2  ‘vector mesons’ and 1 ‘singlet’, are grouped into 
subsets according to their dynamics, and  we shall also present the grouping scheme 
for the ( 2 N ) 3  ‘baryons’. We should point out that the decompositions from the group 
theoretical consideration given by 

N O N * = 1 0 ( N 2 - 1 )  (1.6) 

and  

( N + 2 ) (  N + l ) N  (N+ 1 ) N (  N - 1) 
3 

N O N O N =  0 6 

‘ ( N +  1 ) N (  N - 1) 
3 

N ( N -  1 ) ( N - 2 )  
(1.7) 6 0 0 

give only the first step, which merely separates out the product functions according to 
their symmetry property. Our grouping schemes resulting from the dynamical consider- 
ations give further subgrouping according to how the set of equations of evolution for 
these product wavefunctions decomposes into independent subsets, and  as we shall 
see in the following sections, the results of our dynamical grouping agree with the 
grouping of the elementry particles according to the theory of quarks. It is not the 
purpose of this paper to speculate on whether (1.4) have any direct relevance to the 
dynamics of the actual quarks, but we are simply presenting the results as they are. 
The quantities represented by the combinations of the products of +, may arise in 
other physical problems and  have other physical interpretations (such as in the case 
of quantum electronics already mentioned [ l ,  81). If @ satisfies an  equation of the 
form (1.4), then the equations of evolution for the sets of products of Gj decompose 
into independent subsets as our  results summarised in tables 1 and  3 show. 

The components 9, , &, . . . , +N of I+!J given by (1.4) are the analogues of the quark 
wavefunctions, and their complex conjugates $, , (L2, . . . , q,, are the analogues of the 
antiquark wavefunctions, where N corresponds to the number of quark flavours. The 
odd  and even subscripts of the wavefunctions divide naturally into two classes from 
(1.4); the quark wavefunctions U, d, s, c, b, t, . . . correspond to the wavefunctions 
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Table 1. The grouping of the wavefunctions for the 'pseudoscalar mesons' 4(S) (the upper 
sign) and for the 'vector mesons' +(A) (the lower sign); m, n = 3, 4 , .  . . , N. 

Nature of group Elements 

1 group of 3 

N - 2 groups of 4 

$(N-2)(N-3) g r o u p s o f 2  

N - 2 groups of 1 

N 

] = I  
Extra group of 1 for the 'vector meson' 

Singlet (2N)-1/2 f ($,&,+$,+,) 

(2N)-'/2 c ($,J,-J,$,) 

,=1 

Table 2. The symmetric (S), mixed symmetric (Ms), mixed antisymmetric (MA),  and 
antisymmetric (A) arrangments of 'quark flavour' wavefunctions a, P , 7. 

Arrangement Wavefunctions 

S 

given in the parentheses in the following: 

The d and U quark wavefunctions, which correspond to wavefunctions with subscripts 
1 an 2 ,  obey a set of coupled equations somewhat different from those for the remaining 
quark wavefunctions with subscripts greater than 2 .  Unless otherwise specified, the 
subscripts m, n, p will be used in the following to denote numbers greater than 2 (and 
s N ) ,  We shall denote by S the symmetric arrangement of quark flavour or spin 
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Table 3. The grouping of the ‘baryons’; m, n, p = 3, 4 , .  . . , N. 

S (total number = (T,,+~) 

N - 2  groups of 1 
i ( N - 2 ) ( N - 3 )  groups of 2 
& ( N - 2 ) ( N - 3 ) ( N - 4 )  groups of 1 

( * I  $2*m 1 
(9,n$n$l), ($,,,$,,&), m # n 

($w,$m9p), m f n f P 

wavefunctions, by A the antisymmetric arrangement and by Ms and MA the mixed 
symmetric and mixed antisymmetric arrangements. 

2. Mesons 

The N 2  - 1 symmetric arrangements of +j(clk given in table 1 ,  which will be collectively 
called c $ ( S ) ,  are the analogues of, and will be referred to as, the quark flavour part 
of the wavefunctions of the pseudoscalar mesons. The N 2  antisymmetric arrangements 
of $j& given in table 1 ,  which will be collectively called c$(A), are the analogues of, 
and will be referred to as, the quark flavour part of the wavefunctions of the vector 
mesons. The wavefunctions of the singlet is also given in table 1 .  The grouping of 
these wavefunctions or ‘particles’ into groups of 3 ,  4 ,  2, and 1 as presented in table 1 
can be verified by differentiating the wavefunctions with respect to the time, assuming 
that (Lj and (i;k do not generally commute, and by using (1 .4) .  For example, for N = 4 
(four quark flavours d, U, s, c), the equations of evolution for the pseudoscalar mesons 
decompose into the following independent subsets of groups: 1 group of 3 (T- ,  T , 
T+), 2 groups of 4 (KO, K + ,  Bo, K -  and Do, D+, Bo, D-) ,  1 group of 2 ( F - ,  F + )  
and 2 groups of 1 (77 and 77,); the equations of evolution for the vector mesons 
decompose into 1 group of 3(p- ,  pa, p + ) ,  2 groups of 4 (KO*, K+*, KO*, K-* and 
Do*, D+*, Bo*, D-*), 1 group of 2 (I=-*, F+*) and 3 groups of 1 (U, 4 and $); the 
singlet is ( T ~ ) .  The particles given in the parentheses above are the corresponding 
particles of the actual mesons. 

The spin content part of the wavefunctions consists of the following symmetric 
and antisymmetric arrangements: 

0 

s: x , ( S ) = ? ?  X L S )  = (2)-”’(?.1 +4?) x m  = 4.1 ( 2 . l a )  

A: x(A)  = (2)-’”(?4 -it). ( 2 . l b )  
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Taking into account the spin content as well as the quark flavour content, the wavefunc- 
tions of the mesons are: 

pseudoscalar mesons 0-: 4(S)x(A)  
vector mesons 1-: 4 ( A)x, (S) i = 1,2,  3. 

(2.2~1) 

(2.2b) 
For example, using table 1 and (1.8), the wavefunctions for the pseudoscalar meson 
T+, and the vector meson p+ corresponding to J ,  = 1, are 

1 T + )  = f(uri3.l - u J q  + atu. l -  3.lI.q) (2.3a) 

Ip+) = (2)-1’2(u~@ -@ut) .  (2.3b) 
Since we have assumed that the matrix elements of 2 in (1.4b) are independent of 
the spin, inclusion of the spin would not affect the grouping of particles presented in 
table 1. Using (2.2) and table 1, we have N 2 - 1  pseudoscalar mesons, 3 N 2  vector 
mesons and 1 singlet, making up a total of ( 2 N ) 2  mesons. 

3. Baryons 

In this section, we consider the set of N 3  products I),&&, and see how the set of 
equations of evolution of these wavefunctions decomposes into independent subsets. 
In analogy with the baryon wavefunctions in elementary particle physics, we first form 
combinations of the N 3  product wavefunctions (of three ‘quarks’) according to their 
symmetry types. There are the symmetric (S), mixed symmetric (Ms), mixed antisym- 
metric (MA) and antisymmetric (A) arrangements of three ‘objects’. Depending on 
whether all three subscripts of + are the same (three ‘quarks’ of the same flavour for 
which each wavefunction I) will be denoted by a ) ,  or two of three subscripts of $ are 
the same (for which the wavefunctions will be denoted by a, a and p ) ,  or the II, have 
all different subscripts (for which the + will be denoted by a, /3, y ) ,  the possible 
arrangements for all the symmetry types are given in table 2. The total number of 
possible arrangements, ten, is equal to the number of permutations of three objects, 
which, for the cases of three identical objects ( a a a ) ,  two identical objects (asp) and 
three different objects ( a p y )  are given respectively by 

3! -- 3! 
-6  -- 3! -= 1 

3 !  2!1! l! l! l!  
- 3  (3.1) 

where we have made use of the formula for the number of permutations of n things, 
p of which are of one kind, q of which another etc, given by 

n !  
p ! q ! .  .: (3.2) 

It can be verified that the wavefunctions given in table 2 are orthornormalised. 
We shall use S, Ms, MA and A to specify the type of wavefunction and write, for 

example, (nap)  under the symmetry type S to denote 42(S),  (aap)  under the symmetry 
type Ms to denote +,(Ms). However, there are two cases, +*(MS) and &(MS) for 
(apy )  under the heading Ms,  for which we shall write ( a p y )  and (apy) ’ .  Similarly, 
we shall write ( a p y )  and (apy ) ‘  under the heading MA to denote +Z(MA) and 43(MA). 
We shall also use uN to denote the combinatorial number 

u N  = (:I) = i N ( N  - 1) (  N -2). (3.3) 
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The results for the grouping of these N 3  wavefunctions, which are the analogues 
of the baryon wavefunctions in elementary particle physics, are presented in table 3. 
The subscripts m, n, p are used to denote integers greater than 2 and less than or  
equal to N. According to the definitions of the notation given above, the 
wavefunction ( $ I $ , $ m )  under the heading M s ,  for example, denotes 
( l / ~ ‘ % ) [ ( $ ~ $ ~  + - 2 $ l $ , $ m ]  while the wavefunction under the head- 
ing S denotes (l,’&)( $l$l$m + $l$m$l + The grouping of these wavefunc- 
tions, o r  ‘baryons’, as presented in table 3 can again be verified by differentiating the 
wavefunctions with respect to time and by using (1.4). 

The total number of wavefunctions for the types S, Ms,  MA and A which are given 
by aN+2, 2aN+, , 2aN+1 and  aN respectively are, for the case N = 3, equal to 10, 8, 8 
and  1, which correspond to the familiar baryon decuplet, octets and  singlet. The 
decuplet consists of groups of 4, 3,  2 ,  1, and  the octet consists of groups of 2, 4 and 
2 particles. For example, the equations of evolution of S, ($1$1$1),  ( $ 1 $ ~ $ 2 ) ,  ($1$2$2), 

form an independent subset of a group of 4 in the decuplet, while the set 
involving Ms (or MA), ($1$1+2), ($2$2$1)  (the ‘neutron’ and the ‘proton’), forms a 
group of 2 in the octet. 

For N = 6, the total numbers of wavefunctions for the types S, Ms, MA and A are 
56,  70, 70 and  20. Our results in table 3 show how the equations of evolution of the 
wavefunctions or  ‘particles’ in these multiplets decompose into independent subsets 
or  groups for a general value of N. 

The spin content part of the wavefunctions consists of the following arrangements: 

s: xl(s)=ttt X 2 ( S )  = (3)-I’2(tti + tit  +it?) 
X d S )  = (3)-”2(?&.1+it.l+.1it) X d S )  = JJ.1 
M s :  

MA: XI(MA) = (2)-”2(f&t-it?) X Z ( M A )  = (2)-1’2(TJi -if&). 
Taking account of the spin content as well as the quark flavour content, the wavefunc- 
tions of the baryons consist of those products presented in table 4. The total number 
of baryons, as can be verified, is Again, since we have assumed that 

Xi(Ms) = (6)--”*(TJt +Ltt -2tTJ) X I ( M S )  = (6)-”*(?&& + i t& -2JJt) 

Table 4. The wavefunctions o f  the baryons, taking account o f  the spin. 

Arrangement Wavefunctio’ns 
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the matrix elements of &' in (1.4b) are independent of the spin, inclusion of the spin 
would not affect the grouping of particles presented in table 3. 

4. Summary 

A system whose time evolution can be unitarily transformed into a form given by (1.4) 
is said to possess the Gell-Mann dynamic symmetry. The dynamical equations of 
evolution for the sets of N 2  products (cs(clk and N 3  products +j$k$, are shown to 
decompose into various independent subsets. Members of products appearing in the 
same subsets are grouped. More precisely, various combinations of products as shown 
in tables 1 and 3 are formed, and they are shown to fall into groups given in the tables 
according to the dynamical consideration which we stated. If G j ,  j = 1,2, . . . , N, are 
the analogues of N-quark flavour wavefunctions in elementary particle physics, then 
the various combinations of the product wavefunctions given in tables 1 and 3 are the 
analogues of the wavefunctions of the mesons and the baryons respectively. The 
groupings of these wavefunctions agree with the groupings of the corresponding 
elementary particles. It is tempting to suggest that a Hamiltonian of the form (1.4b) 
could be the low-energy limit of a more fundamental relativistic field theory in the 
context of elementary particle physics. In the absence of a clear proof, however, we 
would leave this possible link to future studies. It is to be stressed that regardless of 
the origin of the wavefunctions, the sets of product wavefunctions fall into the groups 
shown in tables 1, 3 and 4 if the dynamics of these functions are characterised by (1.4). 
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